SenseCam Image Localisation Using Hierarchical SURF Trees

نویسندگان

  • Ciarán Ó Conaire
  • Michael Blighe
  • Noel E. O'Connor
چکیده

The SenseCam is a wearable camera that automatically takes photos of the wearer’s activities, generating thousands of images per day. Automatically organising these images for efficient search and retrieval is a challenging task, but can be simplified by providing semantic information with each photo, such as the wearer’s location during capture time. We propose a method for automatically determining the wearer’s location using an annotated image database, described using SURF interest point descriptors. We show that SURF out-performs SIFT in matching SenseCam images and that matching can be done efficiently using hierarchical trees of SURF descriptors. Additionally, by re-ranking the top images using bi-directional SURF matches, location matching performance is improved further.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robot Localisation Using Natural Landmarks

This paper introduces an optimised method for extracting natural landmarks to improve localisation during RoboCup soccer matches. The method uses modified 1D SURF features extracted from pixels on the robot’s horizon. Consistent with the original SURF algorithm, the extracted features are robust to lighting changes, scale changes, and small changes in viewing angle or to the scene itself. Furth...

متن کامل

Adversarial Training for Adverse Conditions: Robust Metric Localisation using Appearance Transfer

We present a method of improving visual place recognition and metric localisation under very strong appearance change. We learn an invertable generator that can transform the conditions of images, e.g. from day to night, summer to winter etc. This image transforming filter is explicitly designed to aid and abet feature-matching using a new loss based on SURF detector and dense descriptor maps. ...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

Hierarchical Image-based Localisation for Mobile Robots with Monte-Carlo Localisation

This paper extends our previous works on image-based localisation for mobile robot. The image-based localisation consists in matching the current view experienced by the robot with the reference views stored in the visual memory of the robot. The original idea was to use the Fourier components as signatures for the omnidirectional images acquired by the robot. The extensions proposed in this pa...

متن کامل

Content vs. Context for Multimedia Semantics: The Case of SenseCam Image Structuring

Much of the current work on determining multimedia semantics from multimedia artifacts is based around using either context, or using content. When leveraged thoroughly these can independently provide content description which is used in building content-based applications. However, there are few cases where multimedia semantics are determined based on an integrated analysis of content and cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009